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Abstract

We numerically investigate the accuracy of two Monte Carlo algorithms originally proposed by Zimmerman [1] and
Zimmerman and Adams [2] for particle transport through binary stochastic mixtures. We assess the accuracy of these
algorithms using a standard suite of planar geometry incident angular flux benchmark problems and a new suite of in-
terior source benchmark problems. In addition to comparisons of the ensemble-averaged leakage values, we compare
the ensemble-averaged material scalar flux distributions. Both Monte Carlo transport algorithms robustly produce
physically-realistic scalar flux distributions for the benchmark transport problems examined. The base Monte Carlo
algorithm reproduces the standard Levermore-Pomraning model [3, 4] results. The improved Monte Carlo algorithm
generally produces significantly more accurate leakage values and also significantly more accurate material scalar flux
distributions. We also present deterministic atomic mix solutions of the benchmark problems for comparison with the
benchmark and the Monte Carlo solutions. Both Monte Carlo algorithms are generally significantly more accurate
than the atomic mix approximation for the benchmark suites examined.

Keywords:
Monte Carlo particle transport, binary stochastic mixture, stochastic media

1. Introduction

Particle transport through binary stochastic mixtures has received significant research attention in the last two
decades [3, 4]. Much of the research has focused on the development and analysis of approximate deterministic models
for the solution of such particle transport problems. The most common approach to solving particle transport problems
involving binary stochastic media is to use the atomic mix approximation [4] in which the transport problem is solved
using ensemble-averaged material properties. The atomic mix approximation is appealing because of its simplicity
and computational efficiency but may not be accurate enough depending on the details of the stochastic material
properties. The most ubiquitous approximate deterministic model developed specifically for solving binary stochastic
media transport problems is often referred to as the Levermore-Pomraning model or the Standard Model [3, 4].

The accuracy of the Levermore-Pomraning model has previously been examined by Adams, Larsen, and Pomran-
ing [5] using a suite of benchmark problems involving a non-stochastic isotropic angular flux incident on one boundary
of a one-dimensional planar geometry binary stochastic medium. The benchmark suite is characterized by nine differ-
ent sets of material cross sections, mean material slab widths, and material scattering ratios as well as three different
total slab widths. The distribution of material slab widths is assumed to be described by Markovian statistics [4]
that are spatially homogeneous. The fiducial quantities for comparison are the ensemble-averaged reflection from
and transmission through the slab. We refer to this standard suite of incident angular flux benchmark test problems as
benchmark Suite I. These benchmark comparisons demonstrated that the Levermore-Pomraning model produces qual-
itatively correct and semi-quantitatively correct results for the reflection and transmission values. Zuchuat, Sanchez,
Zmijarevic, and Malvagi [6] reproduced the Markovian statistics benchmark results published in Ref. [5] and extended
these benchmark solutions to additional non-Markovian material statistics. In addition to the reflection and transmis-
sion values, Zuchuat et al. compared the ensemble-averaged total and material scalar flux distributions. These results
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demonstrated that although the reflection and transmission values computed by the Levermore-Pomraning model were
reasonably accurate, the scalar flux distributions could exhibit significantly larger pointwise errors.

A comparatively limited amount of research has been performed into the development of Monte Carlo algorithms
for the solution of these binary stochastic mixture transport problems. Zimmerman [1] and Zimmerman and Adams [2]
first proposed a Monte Carlo algorithm that is equivalent to the Levermore-Pomraning equations (Algorithm A) and
another Monte Carlo algorithm that should possess increased accuracy (Algorithm B) as a result of improved local
material realization modeling. Murata, Mori, and Nakagawa [7] examined the use of similar algorithms for modeling
spherical fuels in high-temperature gas-cooled reactors. Donovan and Danon [8] applied the Levermore-Pomraning
algorithm proposed by Zimmerman (Algorithm A) to the specific case of a two-dimensional binary stochastic mix-
ture composed of circular disks of one material randomly distributed in a background matrix material. Donovan and
Danon generally refer to these types of Monte Carlo algorithms as “chord length sampling” (CLS) algorithms. Dono-
van and Danon also examined a “limited chord length sampling” (LCLS) algorithm for their problem in which the
particle transport through the disks is modeled explicitly, and the transport through the background material is treated
using CLS (Algorithm A). Donovan and Danon did not examine for their specific problem the approach of using
Algorithm B for both materials in the problem. Donovan and Danon extended the LCLS algorithm to the simulation
of particle transport through a binary stochastic mixture of spheres of constant radius mixed in a three-dimensional
matrix material [9] as well as to the simulation of a single spherical pebble fuel cell [10]. A recent paper by Ji and
Martin [11] examined Monte Carlo chord length sampling algorithms for the neutronics analysis of Very High Tem-
perature Gas-Cooled Reactors. These researchers have generally concluded that incorporating the stochastic nature
of the background medium into the Monte Carlo algorithm via chord length sampling improves the accuracy of the
modeling. To complete and extend the comparisons of Ref. [2], we focus in this paper on the algorithms proposed
by Zimmerman [1] and Zimmerman and Adams [2] applied uniformly over a one-dimensional spatial domain. The
accuracy of the detailed global scalar flux distributions produced by these chord length sampling algorithms has not
been previously investigated using benchmark comparisons.

Zimmerman and Adams [2] numerically demonstrated that the base Monte Carlo algorithm (Algorithm A) solves
the Levermore-Pomraning equations and that the improved algorithm (Algorithm B) is more accurate by comparing
the results of these algorithms to the standard suite (Suite I) of planar geometry incident angular flux binary stochastic
mixture benchmark transport solutions [5]. In this paper, we extend the incident angular flux benchmark comparisons
of these Monte Carlo algorithms to include the ensemble-averaged material scalar flux distributions produced. Eval-
uating the accuracy of the material scalar flux distributions is important, because these distributions determine the
reaction rates in the materials of the system. Also, as demonstrated in Ref. [6], one approximate deterministic model
that gave accurate reflection and transmission probabilities produced unphysical scalar flux distributions for some
problems with optically thick and purely scattering materials. These unphysical scalar flux distributions exhibited a
local maximum in the interior of the spatial domain for problems with no interior sources such as in benchmark Suite
I. Our numerical results demonstrate that for the Suite I benchmark transport problems, Algorithms A and B robustly
produce physically-realistic scalar flux distributions. This result for Algorithm A is largely expected (although not
previously numerically demonstrated for these benchmark problems), because that algorithm solves the Levermore-
Pomraning equations; this result for Algorithm B has not previously been explicitly demonstrated for this benchmark
suite. The scalar flux distributions produced by Algorithm B are generally more accurate than those produced by
Algorithm A.

In this paper, we also investigate the accuracy of these Monte Carlo transport algorithms using a new related suite
of one-dimensional planar geometry interior source benchmark problems that we refer to as Suite II. This suite of
benchmark problems was recently used [12] to investigate the accuracy of the Levermore-Pomraning model for inte-
rior source benchmark problems. (Subsequent to the work reported in Ref. [12], we became aware of unpublished in-
terior source benchmark investigations of the accuracy of the Levermore-Pomraning approximation by Vasques [13].)
Because the interior source scalar flux distributions are of an inherently different character than the distributions ob-
tained for the incident angular flux benchmark problems, the present benchmark comparison significantly extends
the domain of problems for which the accuracy of these Monte Carlo models has been investigated. The material
specifications for benchmark Suite II are the same as for Suite I.

The numerical solutions to both benchmark suites were obtained using the Monte Carlo procedures described by
Adams et al. [5] and Zuchuat et al. [6] in which independent material realizations are sampled from the Markovian
statistics and the transport problem is solved for each realization using the discrete ordinates transport method [14]
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and a high-order angular quadrature set. 5 × 105 independent realizations were simulated and the results averaged
to obtain ensemble-averaged values for the leakage from the slab. We also tabulate the ensemble-averaged material
scalar flux distributions using the procedure described in Ref. [6]. For comparison with the results obtained using the
Monte Carlo algorithms, we also present deterministic atomic mix solutions for the benchmark suites. This paper is
an expanded version of recent conference reports [15, 16].

The remainder of this paper is organized as follows. In Section 2, we describe the benchmark transport problem
that we use to assess the accuracy of the Monte Carlo algorithms. In Section 3, we outline the Monte Carlo algorithms
proposed by Zimmerman [1] and Zimmerman and Adams [2] for the solution of particle transport through stochastic
media. We then present the numerical comparisons of the Monte Carlo algorithms and the atomic mix approximation
in Section 4. We give general conclusions and suggestions for future work in Section 5.

2. Benchmark Transport Problem Suites

In this section, we first describe the binary stochastic mixture benchmark transport problems we use to assess the
accuracy of the Monte Carlo algorithms. We then describe the procedure used to generate the benchmark solutions.

2.1. Benchmark Transport Problem Description

We consider the following two time-independent monoenergetic neutron transport problems [5, 12] with isotropic
scattering in a one-dimensional planar geometry spatial domain defined on 0 ≤ x ≤ L:

µ
∂

∂x
ψ (x, µ) + σt (x)ψ (x, µ) =

1
2
σs (x)

∫ 1

−1
ψ

(
x, µ′

)
dµ′ +

1
2

q (x) ,

0 ≤ x ≤ L , −1 ≤ µ ≤ 1 , (1)

q (x) =
{

0 , Suite I ,
1
L , Suite II , 0 ≤ x ≤ L , (2)

ψ (0, µ) =
{

2 , Suite I ,
0 , Suite II , µ > 0 , (3)

ψ (L, µ) = 0 , µ < 0 . (4)

Eqs. (1)–(4) are written in standard neutronics notation [14]: ψ (x, µ) is the angular flux of particles at position x
traveling with direction cosine µ with respect to the x axis, σt (x) and σs (x) are the macroscopic total and scattering
cross sections, respectively, and q (x) is an interior source of particles. Because the cross sections are random variables,
the angular flux is also a random variable. Suite I is the standard suite of incident angular flux benchmark problems
originally examined in Ref. [5]. Suite II is the interior source benchmark problem recently examined in Ref. [12]. The
interior source defined by Eq. (2) is non-stochastic and spatially uniform. For Suite I, the source is zero throughout the
spatial domain. For Suite II, the interior source is constant in both materials and results in one neutron sourced into
the medium per unit time. A stochastic interior source (varying with material) could be considered; the present non-
stochastic source specification represents an initial effort toward considering interior source problems and simplifies
somewhat the interpretation of the results. The boundary conditions given by Eqs. (3) and (4) are non-stochastic. For
Suite I, these boundary conditions represent an isotropic incident angular flux with a unity incoming partial current at
x = 0 and a vacuum boundary at x = L. For Suite II, the boundary conditions describe vacuum boundaries at both
x = 0 and x = L.

The binary stochastic spatial medium is assumed to be composed of alternating slabs of two materials, labeled
with the indices 0 and 1, with the mean material slab width for material i denoted as Λi. The total and scattering cross
sections for each material are uniform and are denoted as σi

t and σi
s, i = 0, 1, respectively. The distribution of material

slab widths in the planar medium is assumed to be described by spatially homogeneous Markovian statistics [4], in
which case a slab width for material i, λi, can be sampled from an exponential distribution given by

fi (λi) =
1
Λi

exp
(
−
λi

Λi

)
, (5)
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where again Λi is the mean material slab width for material i. Given the mean material slab widths, the probability of
finding material i at any given point in the spatial domain, pi, is given by

pi =
Λi

Λ0 + Λ1
. (6)

This material probability corresponds to the volume fraction of the material in the problem.
The fiducial comparison quantities of interest are the ensemble-averaged exiting partial currents at x = 0 and

x = L, defined respectively as

〈J0〉 =

∫ 0

−1
|µ| 〈ψ (0, µ)〉 dµ , (7)

〈JL〉 =

∫ 1

0
µ 〈ψ (L, µ)〉 dµ . (8)

For the Suite I benchmark with a unity incoming partial current, these partial exiting currents represent, respectively,
the probability of reflection from the slab and the probability of transmission through the slab. For the Suite II
benchmark, the leakage at the left and right boundaries of the slab are identical in the limit of an infinite number of
realizations, i.e. 〈J0〉 = 〈JL〉. (For the finite number of realizations used in the generation of the benchmark results,
the leakage values at the two boundaries agreed to typically three digits.) We choose to simply compare the leakage
from the slab at x = 0, 〈J0〉. Another more subtle motivation for choosing to compare to the leakage value at x = 0
is described in Section 2.2 below. In addition, we focus in our comparisons on the ensemble-averaged material scalar
flux distributions, 〈φi (x)〉, i = 0, 1, as these distributions determine reaction rates in the materials of the system.

The material parameters for the benchmark transport problems are given in Table 1 using the notation of Ref. [6]
(rather than the original notation of Ref. [5]), where the scattering ratio for material i is defined as ci = σ

i
s/σ

i
t. These

material parameters are common between both the Suite I and Suite II benchmark problems. The different case
numbers (i.e. 1, 2, and 3) represent permutations of materials with mean material slab widths of optical depth 0.1, 1.0,
and 10.0. The different case letters (i.e. a, b, and c) represent varying amounts of scattering for each material. For each
set of material parameters (cases 1, 2, and 3), three sets of scattering ratio combinations (cases a, b, and c) and three
slab widths (L = 0.1, 1.0, and 10.0) are considered for each benchmark suite. For all cases, the ensemble-averaged
total cross section, defined as

〈
σt

〉
= p0σ

0
t + p1σ

1
t , is unity. The ensemble-averaged scattering cross section is defined

as
〈
σs

〉
= p0σ

0
s + p1σ

1
s = p0c0σ

0
t + p1c1σ

1
t . The ensemble-averaged cross section values for the different cases are

given in Table 2. These ensemble-averaged material properties are used to generate the atomic mix approximation
solutions for the benchmark suites.

Table 1: Material parameters for benchmark transport problems

Case σ0
t Λ0 σ1

t Λ1 Case c0 c1 L

1 10/99 99/100 100/11 11/100 a 0.0 1.0 0.1
2 10/99 99/10 100/11 11/10 b 1.0 0.0 1.0
3 2/101 101/20 200/101 101/20 c 0.9 0.9 10.0

Table 2: Ensemble-averaged material parameters

Case
〈
σt

〉 〈
σs

〉
1a, 2a 1 10/11
1b, 2b 1 1/11

3a 1 100/101
3b 1 1/101

1c, 2c, 3c 1 9/10
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2.2. Generation of Benchmark Solutions

We generated the benchmark solutions for both suites, including scalar flux distributions, using the methodologies
described in Refs. [5] and [6]. We now briefly describe this benchmark procedure. One instance of the material
realization is generated by first sampling the material located at x = 0 using the probabilities defined in Eq. (6).
Given this sampled material, a material slab width is sampled from the Markovian exponential distribution, Eq. (5),
using the mean material slab width, Λ0 or Λ1, corresponding to the sampled material. The material slab width for the
next (different) material is then sampled in the same manner. This process is repeated until the sum of the sampled
material slab widths exceeds (or equals) the total slab width L. The last sampled material slab width typically requires
truncation to the total slab width. We note that this truncation implies that the final material specification at the x = L
boundary does not rigorously follow Markovian statistics. This truncation and resulting approximation provides
additional motivation for the comparison in Suite II to the leakage value at x = 0, 〈J0〉, instead of the leakage value at
x = L. Given this single material realization, the transport problem described by Eqs. (1)–(4) is then solved for that
realization using a discrete ordinates transport code. This procedure is repeated a large number M of times and the
results averaged to obtain ensemble-averaged values. The ensemble-averaged leakage values at x = 0 and x = L are
computed as [5]

〈J0〉 =
1
M

M∑
m=1

∫ 0

−1
|µ|ψm (0, µ) dµ , (9)

〈JL〉 =
1
M

M∑
m=1

∫ 1

0
µψm (L, µ) dµ , (10)

where ψm (x, µ) is the angular flux computed for realization m, and the angular integral is performed using the same
quadrature as in the discrete ordinates transport calculation. The ensemble-averaged material i scalar flux distribution
is computed as [6]

〈φi (x)〉 =
1

Mi

Mi∑
mi=1

φmi (x) , (11)

where φmi (x) is the material i scalar flux distribution for realization m at spatial location x. Here Mi ≤ M is the number
of realizations with material i present at location x, and the sum is computed only for those realizations.

The discrete ordinates transport code used to generate the benchmark solutions utilizes the linear discontinuous
spatial discretization with the mesh spacing in each material chosen such that σi

t∆x
|µ|min
≤ 1

10 for accuracy, where |µ|min is
the minimum direction cosine in the quadrature set [14]. 5 × 105 independent statistical material realizations were
sampled from Markovian statistics and simulated for each case. The material scalar flux distributions were tallied at
the edges of 100 uniformly-spaced spatial zones. We enforced a minimum of 100 spatial zones for each independent
material realization if the zone size restriction described above would have resulted in a smaller number of zones.

Because we are using the benchmark results to assess the accuracy of Monte Carlo algorithms that use no angular
discretization, we used high-order discrete ordinates quadrature sets in the generation of the benchmark solutions. The
Suite I incident angular flux benchmark solutions were obtained using a standard Gauss-Legendre quadrature set with
N = 64. For the Suite II interior source benchmark problems, we found that angular convergence for the optically
thin slabs (i.e. L = 0.1 and L = 1.0) could only be achieved using very high quadrature orders. This convergence
difficulty is not entirely unexpected, as optically thin problems are known to require high order quadrature sets to
converge because of the effect of the vacuum boundaries [14]. We examined in detail the case 1a benchmark problem
for L = 0.1. This particular case has one highly probable material, material zero with p0 = 0.9, with a small total cross
section, σ0

t = 10/99, resulting in many realizations being composed of optically thin slabs of width σ0
t ∆x = 1/99

mean free paths. The solution of this problem was not converged in angle using a standard S96 Gauss-Legendre
quadrature set. This same problem was converged in angle when using a S96 double-PN quadrature set [14]. Based
on this result, we used a double-PN quadrature set with N = 96 for the Suite II problems with total slab widths of
L = 0.1 and 1.0 and a standard Gauss-Legendre quadrature set with N = 64 for the problems with a total slab width
of L = 10.0. These high-order quadrature sets coupled with the spatial mesh size criterion described above resulted in
the use of very fine spatial meshes.
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We computed the transport solution for each material realization using an unmodified planar geometry discrete
ordinates transport code written in Fortran. We performed the calculation of the ensemble-averaged results using
a Python language driver script (less than 400 lines of actual code) that 1) samples each material realization, 2)
generates and writes to disk an input file for the discrete ordinates transport code corresponding to the sampled material
realization, 3) runs the transport code, 4) parses standard output files from the transport code to obtain the computed
leakage values and scalar flux distributions for that material realization, 5) computes the required ensemble-averaged
sums over all material realizations, and 6) writes the ensemble-averaged results to a summary file. As the generation
of these benchmark solutions is a process to be performed only a limited number of times, this approach has the
significant advantage of requiring no modification or specialization (and associated testing) of the discrete ordinates
transport code for the solution of these benchmark problems. In addition, any transport code could potentially be
used to solve the transport problems by generating the appropriate input file for the code and parsing its output. A
disadvantage to this approach is that the linkage of the Python processing script to the transport code via writing
input files and parsing output files possesses an inherent inefficiency. To ameliorate this inefficiency, we utilized
the pyMPI [17] Python extension to parallelize using the MPI message passing interface [18] the sampling of the
independent material realizations and the solution of the transport problems for each of these realizations. This
parallelization is very efficient, as each MPI process can independently sample a subset of the total number of material
realizations and solve the corresponding transport problems with no parallel communication with other processes
required until all of its computational work is completed. Care must be exercised to ensure that independent random
number streams are utilized on each MPI process. The benchmark solutions described in this paper were obtained
using typically 512 processors of a Linux cluster with sixteen AMD Opteron 2.3 GHz processors per compute node.
Each benchmark case required from less than one hour to several hours of simulation time. The simulation time per
material realization varies significantly based on the total slab width, the material properties, and the quadrature order
but was typically on the order of a fraction of a second to a few seconds.

We regenerated the benchmark solutions to the standard suite of benchmark problems (Suite I) originally defined
in Ref. [5] using the same number of material realizations (105) and the same angular quadrature order (N = 16) as in
the original reference. We compared our benchmark solutions against the probabilities of reflection and transmission
published in Refs. [5] and [6], finding agreement to typically two to three digits, and against the scalar flux distribution
data remaining available [19] from Ref. [6]. These comparisons establish confidence that our benchmark procedure is
consistent with previously published benchmark results.

Finally, we note that an alternative approach to generating the benchmark solutions is to use a Monte Carlo
algorithm for the solution of the transport problem associated with each material realization. This approach was
followed by Donovan and Danon [8] in the generation of their two-dimensional benchmark results and by Ji and
Martin [11] in the generation of their three-dimensional benchmark results.

3. Monte Carlo Algorithms

In the previous section, we described the binary stochastic mixture benchmark transport problems that we use
to assess the accuracy of the Monte Carlo particle transport algorithms. In this section, we describe in more detail
the Monte Carlo Algorithms A and B proposed by Zimmerman [1] and Zimmerman and Adams [2] for solving the
benchmark transport problem described above.

For both Algorithms A and B, a particle history begins with sampling the source particle characteristics appropri-
ately for either Suite I or II. For Suite I, the spatial position x is set to zero, a direction of flight cosine µ is sampled
from a cosine distribution modeling the isotropic incident angular flux, and a material identifier for the particle is sam-
pled according to the probabilities defined in Eq. (6). For Suite II, the spatial position x is sampled uniformly within
the spatial domain, an isotropic direction cosine modeling the interior source is sampled, and a material identifier for
the particle is sampled according to the probabilities defined in Eq. (6).

A new event, the distance to material interface, di, is introduced for these Monte Carlo algorithms for transport
through stochastic mixtures. A distance to material interface is sampled by sampling a material slab width from the
exponential distribution given by Eq. (5) and dividing by the magnitude of the particle direction cosine, |µ|, to account
for the direction of particle motion, i.e. di = −Λi ln(ξ)/|µ|, where ξ is a random number.

Next, distances to the required standard Monte Carlo events are either sampled or computed. The distance to
collision, dc, is sampled using the macroscopic total cross section corresponding to the material in which the particle

6



exists. Because we are interested in comparing the material scalar flux distributions, we impose a uniform spatial mesh
on the spatial domain in which to tally this information. As a result, the distance to zone boundary, db, is computed
using the current position and direction of flight of the particle and the boundaries of the spatial zone in which the
particle exists. We compute the Monte Carlo scalar flux tallies using a track length estimator [14]. The tally volume
for a material scalar flux (i.e. the volume by which the summed track length is divided) is the zone volume times the
volume fraction of the material in the zone, where the volume fraction of material i is equal to the material probability
pi defined in Eq. (6). For both Monte Carlo algorithms, the distance the particle travels in the zone is tallied whenever
a particle is moved.

In the next sections, we describe in more detail the particle history flow for Algorithms A and B.

3.1. Algorithm A: The Levermore-Pomraning Solution

For each particle history:

1. Sample the distance to material interface, di.
2. Compute the distance to zone boundary, db, and sample the distance to collision, dc.
3. Compute the minimum of db, dc, and di to determine the sampled event.
4. If db is the minimum distance, move the particle to the zone boundary. If the particle is escaping the spatial

domain, update the appropriate leakage tally, terminate the history, and track the next particle. Otherwise, return
to step 1.

5. If dc is the minimum distance, move the particle the appropriate distance, and sample the collision type using
the macroscopic total and scattering cross sections for the material in which the particle exists. If the sampled
collision is absorption, terminate the history and track the next particle. If the sampled collision is scattering,
perform the scattering collision by sampling the outgoing characteristics of the scattered particle; the particle
maintains its current material identifier. Return to step 1.

6. If di is the minimum distance, move the particle the appropriate distance and switch the material identifier.
Return to step 1.

Sahni [20] has argued that a “generic equation” approach to particle transport through a binary stochastic mixture such
as employed in a Monte Carlo transport algorithm is equivalent to the Levermore-Pomraning model if each particle
track is uncorrelated from its previous track. Because each particle track is uncorrelated with its previous tracks
in Algorithm A, we expect that Algorithm A will agree with the Levermore-Pomraning model. The Levermore-
Pomraning model is exact for a purely absorbing binary stochastic medium in which the materials are distributed
according to Markovian statistics; this model becomes approximate when scattering is introduced [4].

Note that following a collision, a new distance to material interface is sampled in Algorithm A. As a result, the
particle encounters a different material realization following a collision, which is unphysical. Therefore, we expect
Algorithm A to be less accurate in highly scattering materials with optically thick mean material slab widths. As
noted by Zimmerman and Adams [2], this algorithm is exact in a purely absorbing medium in which the materials are
distributed according to Markovian statistics. Because we have imposed a spatial mesh on the problem, a new distance
to material interface is also sampled following a zone boundary crossing. Since Algorithm A models a Markovian (i.e.
a no-memory) transport process involving uncorrelated particle flights, sampling a new distance to material interface
following a zone boundary crossing does not introduce additional error into the algorithm. Numerical experiments
using Algorithm A have confirmed that consistent leakage values and scalar flux distributions are obtained when using
significantly different numbers of zones.

3.2. Algorithm B: A More Accurate Solution

For each particle history:

1. Sample the distance to material interface values in the forward and backward directions of particle motion,
d+i and d−i , respectively. (When sampling the initial source particle for benchmark Suite I, set the distance to
material interface in the backward direction, d−i , to zero.)

2. Compute the distance to zone boundary, db, and sample the distance to collision, dc.
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3. Compute the minimum of db, dc, and d+i to determine the sampled event.
4. If db is the minimum distance, initially treat as in Algorithm A, step 4. Instead of resampling the distance to

material interface (returning to step 1) as in Algorithm A, adjust the distance to material interface values in the
forward and backward directions to account for the distance the particle was moved. Return to step 2.

5. If dc is the minimum distance, initially treat as in Algorithm A, step 5. Instead of resampling the distance to
material interface (returning to step 1) as in Algorithm A, adjust the distance to material interface values in the
forward and backward directions to account for the distance the particle was moved. If the sampled collision is
scattering, also adjust the distance to material interface values in the forward and backward directions to account
for the change in direction of flight of the particle after the scatter. Switch the forward and backward distance
to material interface values if the particle is backscattered (i.e. the value of the direction cosine µ changes sign).
Return to step 2.

6. If d+i is the minimum distance, move the particle the appropriate distance, switch the material identifier, sample
a new d+i , and set d−i to zero. Return to step 2.

In Algorithm B, a particle can move, undergo collisions, and cross zone boundaries within one material and encounter
the same local material realization, which is physically more realistic than Algorithm A. As a result, we expect Algo-
rithm B to be more accurate than Algorithm A. Algorithm B remains inexact if a particle reenters the same material at
the same location within one history, as the sampled material realization will be different upon reentry. Zimmerman
and Adams [2] also examined an Algorithm C that maintained additional realization information regarding the ma-
terials surrounding the current material in which the particle exists. This algorithm demonstrated improved accuracy
over Algorithm B but may not be feasible in multiple dimensions. We do not discuss Algorithm C in further detail in
this paper.

4. Numerical Comparisons to Benchmark Problems

In this section, we evaluate the accuracy of the Monte Carlo algorithms described in Section 3 using the benchmark
problem suites described in Section 2. In addition to comparisons of the leakage values, we compare the detailed
scalar flux distributions produced by these Monte Carlo algorithms with the benchmark scalar flux distributions. The
scalar flux distributions were tallied in the Monte Carlo simulations using 100 uniform spatial zones. Each Monte
Carlo simulation was performed using 109 particle histories, resulting in relative standard deviations for the leakage
values and pointwise relative standard deviations for the material scalar flux distributions of typically significantly
less than 0.1%. The Monte Carlo solutions described in this paper were obtained using one processor of a Linux
cluster with sixteen AMD Opteron 2.3 GHz processors per compute node (the same computational platform used to
generate the benchmark solutions). Each Monte Carlo calculation required from less than one hour to a few hours
of simulation time using a single processor, with a maximum run time of approximately seven hours. For all the
problems considered, the Algorithm B solutions required less computing time than the Algorithm A solutions. We
have not investigated this performance difference in detail, but we conjecture that one reason Algorithm A is less
efficient than Algorithm B is the additional number of calls to the exponential function required to sample the distance
to material interface for each particle track.

For comparison with the results obtained using the Monte Carlo algorithms, we also present deterministic atomic
mix solutions for the benchmark problems. These atomic mix solutions use the ensemble-averaged material properties
shown in Table 2. The atomic mix solutions for several of the cases are identical, because the ensemble-averaged total
and scattering cross sections are identical for those cases. The atomic mix approximation produces only an ensemble-
averaged total scalar flux distribution and, as a result, predicts the same scalar flux distribution for both materials in
the system. In each of the cases examined, the deterministic atomic mix solutions were computed using the same
quadrature set used to compute the benchmark solutions. The same maximum spatial zone size and minimum number
of spatial zones restraints used for the generation of the benchmark results were also applied during the generation of
the atomic mix solutions. The resulting atomic mix scalar flux distributions were averaged onto the same spatial mesh
used to tally the benchmark scalar flux distributions. The atomic mix solutions were obtained using one processor of
a Linux cluster with sixteen AMD Opteron 2.3 GHz processors per compute node (the same computational platform
used to generate the benchmark and Monte Carlo solutions). Each atomic mix calculation typically required on the
order of a fraction of a second to a few seconds using a single processor.
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We compare the accuracy of the ensemble-averaged leakage values computed using the atomic mix (AM) approx-
imation or the Monte Carlo (MC) algorithms to the benchmark values using relative errors computed as

E〈X〉 =
〈X〉AM/MC − 〈X〉benchmark

〈X〉benchmark
, (12)

where 〈X〉 represents either the ensemble-averaged leakage at x = 0, 〈J0〉, or at x = L, 〈JL〉. We compare the accuracy
of the scalar flux distributions using a root-mean-squared (RMS) relative error computed as

E〈φi〉
=

√√√√√
1
K

K∑
k=1


〈
φAM/MC

i,k

〉
−

〈
φbenchmark

i,k

〉〈
φbenchmark

i,k

〉 
2

, (13)

where 〈φi (x)〉, i = 0, 1, is the material i scalar flux distribution, and the summation is over the K = 101 cell-edge
values for the deterministic atomic mix solutions and the K = 100 spatial tally zones for the Monte Carlo solutions.
The Monte Carlo scalar flux tallies were computed using track length estimators in the spatial zones. The benchmark
and atomic mix scalar flux results were computed using a discrete ordinates code with a linear discontinuous spatial
discretization [14]. We compare the Monte Carlo zonal scalar flux tally with the benchmark discrete ordinates cell-
average value computed as the algebraic average of the cell-edge values (consistent with the linear discontinuous
discretization). The RMS relative errors of the atomic mix scalar flux distributions were directly computed using the
atomic mix cell-edge scalar flux values and the benchmark discrete ordinates cell-edge scalar flux values.

4.1. Suite I Comparisons

The computed Suite I benchmark, atomic mix, and Monte Carlo leakage values and corresponding relative errors
for cases 1 through 3 are shown in Tables 3–5. The RMS relative error results for the material scalar flux distributions
for cases 1 through 3 are shown in Tables 6–8. The material scalar flux distributions computed using the benchmark
procedure, the atomic mix approximation, and the Monte Carlo algorithms for all cases with L = 10 are plotted (on
log scales) in Figs. 1–3.

The Monte Carlo Algorithm A leakage value results agree in all cases, to typically two to three digits, with
previously-published Levermore-Pomraning model results [5, 6]. The Monte Carlo Algorithm B leakage value results
agree, as far as can be discerned, with the subset of data published as relative errors in graphical form in Ref. [2].

The atomic mix approximation results are the least accurate overall for the benchmark Suite I problems, in error
for some cases by a few orders of magnitude. Pomraning [4] has argued that the atomic mix approximation always
underestimates the transmission through a source-free random mixture as a result of neglecting cross correlation terms.
The 〈JL〉 transmission leakage results in Tables 3–5 and the material scalar flux distributions in Figs. 1–3 are consistent
with this assertion. The atomic mix approximation does not, in general, possess enough accuracy to adequately treat
the incident angular flux problems in benchmark Suite I.

Two general trends regarding Monte Carlo Algorithms A and B can be observed from the Suite I numerical
results. First, the accuracy of Algorithms A and B, as measured by both the reflection and transmission values and the
scalar flux distributions, generally improves as the slab width decreases. Second, both Algorithms A and B generally
underpredict the reflection from the slab and overpredict the transmission through the slab. These trends are consistent
with observations by previous researchers [2, 5, 6] from similar numerical results. Zimmerman has suggested [21]
that Algorithms A and B may overpredict the transmission because an optically thick material may be resampled
as optically thin if a particle makes a repeated attempt to penetrate the material. Maintaining additional material
realization information could improve the accuracy of these algorithms (e.g. Algorithm C in Ref. [2]).

The leakage values computed by both Monte Carlo algorithms for the L = 0.1 slab are accurate to within a couple
of percent. The Monte Carlo algorithms become less accurate as the slab width increases. For the L = 1.0 slab,
the maximum relative error for Algorithm A is -16% for case 1b and for Algorithm B is -5% for case 1c. For the
L = 10 slab width, the typical relative errors are significantly larger. The largest relative error for Algorithm A is
78% for case 1a, while the largest relative error for Algorithm B is 48% for case 1a. Overall, we find that Algorithm
B generally produces significantly more accurate leakage values than Algorithm A, although both algorithms exhibit
some large errors for the leakage values in benchmark Suite I.
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Focusing on the scalar flux distribution RMS relative error results in Tables 6–8, the accuracy of both Algorithms
A and B generally improves as the slab width decreases. The scalar flux distributions computed by both algorithms for
the L = 0.1 slab are accurate to within 1% RMS relative error. The RMS relative errors for the L = 1.0 slab are typically
a few percent; the maximum Algorithm A error is 26% for case 2c and the maximum Algorithm B error is 4% for
case 1c. The RMS relative errors for the L = 10.0 slab are generally somewhat larger; the maximum Algorithm A error
is 64% for case 2c and the maximum Algorithm B error is 24% for case 1a. In general, when Algorithm A is reasonably
accurate (i.e. within a couple of percent of the benchmark solution), Algorithm B is typically somewhat more accurate.
When Algorithm A produces very inaccurate scalar flux distributions (i.e. larger than approximately 25% relative
differences compared to the benchmark solution), Algorithm B is usually significantly more accurate. The overall
Algorithm B RMS relative errors in the scalar flux distributions for the three cases examined are about a factor of
one and one-half to six times smaller than the Algorithm A errors. Examining the material scalar flux distributions
in Figs. 1–3, the Algorithm B scalar flux distributions are clearly in overall better agreement with the benchmark
distributions than the Algorithm A distributions. The statistical fluctuations evident in some of the benchmark flux
distributions derive from a small material probability resulting in a relatively small number of realizations contributing
to the distribution. These statistical fluctuations were also observed in previous benchmark comparisons [6].

As described in Section 3.1, we expect Algorithm A to be least accurate in scattering materials with optically thick
mean material slab widths. One particular example of this phenomenon is represented by case 2c for the L = 10 slab.
For this case, materials zero and one have mean material slab widths of one and ten, respectively, and both materials
have a scattering ratio of 0.9. The RMS relative scalar flux error values, given in Table 7, are 0.102 for material zero
and 0.639 for material one. The error in the more optically-thick material one is significantly larger than in the less
optically-thick material zero. Algorithm B is significantly more accurate than Algorithm A for this case, having RMS
relative error values of 0.024 and 0.101 for materials zero and one, respectively.

Finally, we note that both Algorithms A and B produce physically-realistic material scalar flux distributions for the
benchmark transport problems considered. This result is largely expected for Algorithm A, because it has previously
been shown to produce the Levermore-Pomraning reflection and transmission probability results [2]; the demonstra-
tion of this fact for Algorithm B is new. The ability of an algorithm to accurately compute scalar flux distributions is
important, as these distributions determine the reaction rates in the materials of the system.
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Table 6: Suite I scalar flux comparisons for case 1

RMS Relative Error E〈φi〉

L Case Quantity Atomic Mix Algorithm A Algorithm B

a 〈φ0〉 0.053 0.005 0.005
〈φ1〉 0.128 0.009 0.001

0.1 b 〈φ0〉 0.144 0.001 0.001
〈φ1〉 0.867 0.003 0.003

c 〈φ0〉 0.055 0.002 0.001
〈φ1〉 0.190 0.009 0.001

a 〈φ0〉 0.082 0.038 0.016
〈φ1〉 0.122 0.023 0.028

1.0 b 〈φ0〉 0.498 0.010 0.002
〈φ1〉 0.672 0.021 0.006

c 〈φ0〉 0.111 0.035 0.014
〈φ1〉 0.248 0.089 0.035

a 〈φ0〉 0.343 0.377 0.239
〈φ1〉 0.440 0.261 0.175

10.0 b 〈φ0〉 0.909 0.093 0.025
〈φ1〉 0.828 0.042 0.030

c 〈φ0〉 0.514 0.173 0.118
〈φ1〉 0.393 0.327 0.200

RMS of E〈φ0〉 0.408 0.143 0.090

RMS of E〈φ1〉 0.513 0.144 0.091
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Table 7: Suite I scalar flux comparisons for case 2

RMS Relative Error E〈φi〉

L Case Quantity Atomic Mix Algorithm A Algorithm B

a 〈φ0〉 0.067 0.004 0.005
〈φ1〉 0.220 0.002 0.001

0.1 b 〈φ0〉 0.162 0.001 0.001
〈φ1〉 1.581 0.001 0.001

c 〈φ0〉 0.068 0.001 0.001
〈φ1〉 0.335 0.002 0.000

a 〈φ0〉 0.199 0.014 0.003
〈φ1〉 0.209 0.029 0.005

1.0 b 〈φ0〉 0.611 0.003 0.002
〈φ1〉 5.573 0.030 0.015

c 〈φ0〉 0.224 0.015 0.002
〈φ1〉 1.772 0.255 0.009

a 〈φ0〉 0.610 0.162 0.045
〈φ1〉 0.702 0.091 0.040

10.0 b 〈φ0〉 0.959 0.092 0.001
〈φ1〉 1.981 0.189 0.034

c 〈φ0〉 0.782 0.102 0.024
〈φ1〉 1.274 0.639 0.101

RMS of E〈φ0〉 0.517 0.071 0.017

RMS of E〈φ1〉 2.184 0.240 0.039
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Table 8: Suite I scalar flux comparisons for case 3

RMS Relative Error E〈φi〉

L Case Quantity Atomic Mix Algorithm A Algorithm B

a 〈φ0〉 0.076 0.002 0.002
〈φ1〉 0.043 0.001 0.001

0.1 b 〈φ0〉 0.176 0.001 0.001
〈φ1〉 0.155 0.002 0.002

c 〈φ0〉 0.078 0.001 0.001
〈φ1〉 0.050 0.001 0.001

a 〈φ0〉 0.224 0.013 0.004
〈φ1〉 0.079 0.005 0.001

1.0 b 〈φ0〉 0.625 0.001 0.000
〈φ1〉 0.858 0.002 0.002

c 〈φ0〉 0.257 0.013 0.001
〈φ1〉 0.229 0.009 0.001

a 〈φ0〉 0.185 0.292 0.149
〈φ1〉 0.300 0.060 0.023

10.0 b 〈φ0〉 0.954 0.030 0.001
〈φ1〉 0.873 0.025 0.010

c 〈φ0〉 0.783 0.151 0.077
〈φ1〉 0.556 0.410 0.113

RMS of E〈φ0〉 0.484 0.110 0.056

RMS of E〈φ1〉 0.470 0.138 0.039
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Figure 1: Suite I scalar flux distributions for case 1 and L = 10
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Figure 2: Suite I scalar flux distributions for case 2 and L = 10
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Figure 3: Suite I scalar flux distributions for case 3 and L = 10
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4.2. Suite II Comparisons

The computed Suite II benchmark, atomic mix, and Monte Carlo leakage values and corresponding relative errors
for cases 1 through 3 are shown in Tables 9–11. The RMS relative error results for the material scalar flux distributions
for cases 1 through 3 are shown in Tables 12–14. The material scalar flux distributions computed using the benchmark
procedure, the atomic mix approximation, and the Monte Carlo algorithms for all cases with L = 10 are plotted in
Figs. 4–6.

We first make some observations about the results of the benchmark simulations. We note that the leakage values
for the optically-thin L = 0.1 slab imply that nearly all particles escape the spatial domain through the boundaries for
nearly all cases, as expected. The only significant exception is case 3b in which material one is purely absorbing and
has a mean material slab width of 10 mean free paths. As for the Suite I benchmark results, statistical fluctuations are
evident in some of the benchmark flux distributions, most notably material one of case 2b shown in Fig. 5(d). These
fluctuations have been observed in previous investigations [6] and attributed to a small material probability resulting
in a relatively small number of realizations contributing to the flux distribution. The fluctuations are more pronounced
in benchmark Suite II than in Suite I, although the numerical results for both suites were generated using the same
number of material realizations. Finally, we note the mildly concave-up nature of the ensemble-averaged material zero
scalar flux distribution near the boundaries in case 3a. This concavity is unique to case 3a and was not expected. We
further investigated this characteristic of the scalar flux distribution by generating independent spherical harmonics
P15 transport solutions for the case 3a benchmark problem with L = 10.0. The ensemble-averaged material zero scalar
flux distribution generated using the P15 approximation also exhibits the concave-up nature near the boundaries. Given
the consistency in the scalar flux behavior between the S64 and the P15 results and the fact that our benchmark Suite
I case 3a scalar flux distributions agree with those obtained by Zuchuat et al. [6], we believe this characteristic of the
benchmark scalar flux distribution to be correct.

The Monte Carlo Algorithm A results for benchmark Suite II agree in all cases, to typically three to four digits
for the leakage values and to typically three digits for the material scalar flux RMS relative error, with previously-
published Levermore-Pomraning model results for this interior source benchmark suite [12].

The atomic mix approximation results are the least accurate overall for the benchmark Suite II problems. Although
the material scalar flux distributions computed using the atomic mix approximation are reasonably accurate in limited
instances (e.g. material one of case 1a), in general the flux distributions exhibit significant errors.

The leakage values computed by both Monte Carlo algorithms for the optically-thin slabs (L = 0.1 and 1.0) are
accurate to better than 1%. The Monte Carlo algorithms become less accurate as the slab width increases. For the
L = 10 slab width, the typical relative error is a few percent. The largest relative error for Algorithm A is -9% for
case 2c, while the largest relative error for Algorithm B is 5% for case 1a. Overall, we find that Algorithm B generally
produces significantly more accurate leakage values than Algorithm A. These leakage results are generally consistent
with observations from benchmark Suite I. However, we note that the errors in the leakage values for the interior
source benchmark suite are generally somewhat smaller than those for the incident angular flux benchmark suite.

The scalar flux distributions computed using Monte Carlo Algorithms A and B are generally more accurate for
the optically-thin slabs. The scalar flux distributions computed by both algorithms for the L = 0.1 slab are accurate
to within about 1% RMS relative error. The RMS relative errors for the L = 1.0 slab are typically a few percent; the
maximum Algorithm A error is 27% for case 2a and the maximum Algorithm B error is 5% for case 1a. The RMS
relative errors for the L = 10.0 slab are generally somewhat larger; the maximum Algorithm A error is 62% for case 2a
and the maximum Algorithm B error is 11% for case 3a. We observe that the largest error in the Algorithm A scalar
flux distributions occurs in case 2a. The material zero scalar flux computed by Algorithm A for this case is reasonably
accurate (RMS relative error of 2.5%), while the material one scalar flux distribution exhibits large pointwise errors
(RMS relative error of 61.9%). For this case, materials zero and one have mean material slab widths of one and ten,
respectively. Material one is purely scattering and optically thick, conditions under which we expect Algorithm A to
be inaccurate. Material zero is purely absorbing, and hence Algorithm A should be generally accurate in this material.
Algorithm B produces significantly more accurate scalar flux distributions for this case.

Overall, we find that Algorithm B generally produces significantly more accurate leakage values than Algorithm A
and also significantly more accurate material scalar flux distributions. Both Monte Carlo transport algorithms robustly
produce physically-realistic scalar flux distributions for this interior source benchmark problem. These conclusions
are generally consistent with results from the incident angular flux benchmark suite.
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Table 12: Suite II scalar flux comparisons for case 1

RMS Relative Error E〈φi〉

L Case Quantity Atomic Mix Algorithm A Algorithm B

a 〈φ0〉 0.303 0.001 0.001
〈φ1〉 0.282 0.003 0.000

0.1 b 〈φ0〉 0.407 0.001 0.001
〈φ1〉 1.203 0.002 0.002

c 〈φ0〉 0.320 0.001 0.001
〈φ1〉 0.408 0.008 0.000

a 〈φ0〉 0.164 0.016 0.006
〈φ1〉 0.101 0.085 0.054

1.0 b 〈φ0〉 0.593 0.010 0.001
〈φ1〉 0.922 0.024 0.004

c 〈φ0〉 0.254 0.025 0.005
〈φ1〉 0.397 0.057 0.021

a 〈φ0〉 0.058 0.047 0.031
〈φ1〉 0.064 0.108 0.082

10.0 b 〈φ0〉 0.740 0.066 0.011
〈φ1〉 0.137 0.012 0.004

c 〈φ0〉 0.262 0.150 0.086
〈φ1〉 0.210 0.043 0.040

RMS of E〈φ0〉 0.398 0.058 0.031

RMS of E〈φ1〉 0.556 0.053 0.036
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Table 13: Suite II scalar flux comparisons for case 2

RMS Relative Error E〈φi〉

L Case Quantity Atomic Mix Algorithm A Algorithm B

a 〈φ0〉 0.308 0.001 0.001
〈φ1〉 0.245 0.001 0.001

0.1 b 〈φ0〉 0.417 0.001 0.001
〈φ1〉 1.538 0.001 0.001

c 〈φ0〉 0.326 0.001 0.001
〈φ1〉 0.409 0.001 0.000

a 〈φ0〉 0.168 0.010 0.000
〈φ1〉 0.442 0.273 0.005

1.0 b 〈φ0〉 0.661 0.002 0.000
〈φ1〉 3.567 0.014 0.004

c 〈φ0〉 0.286 0.006 0.000
〈φ1〉 0.796 0.042 0.002

a 〈φ0〉 0.209 0.025 0.013
〈φ1〉 0.621 0.620 0.076

10.0 b 〈φ0〉 0.912 0.082 0.001
〈φ1〉 1.281 0.137 0.008

c 〈φ0〉 0.442 0.145 0.019
〈φ1〉 1.673 0.314 0.039

RMS of E〈φ0〉 0.470 0.056 0.008

RMS of E〈φ1〉 1.526 0.253 0.029
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Table 14: Suite II scalar flux comparisons for case 3

RMS Relative Error E〈φi〉

L Case Quantity Atomic Mix Algorithm A Algorithm B

a 〈φ0〉 0.457 0.004 0.004
〈φ1〉 0.107 0.000 0.000

0.1 b 〈φ0〉 0.547 0.004 0.004
〈φ1〉 0.251 0.000 0.000

c 〈φ0〉 0.469 0.004 0.004
〈φ1〉 0.125 0.000 0.000

a 〈φ0〉 0.357 0.005 0.001
〈φ1〉 0.081 0.013 0.001

1.0 b 〈φ0〉 0.750 0.001 0.000
〈φ1〉 0.516 0.001 0.001

c 〈φ0〉 0.456 0.003 0.001
〈φ1〉 0.100 0.001 0.001

a 〈φ0〉 0.461 0.099 0.077
〈φ1〉 0.286 0.432 0.108

10.0 b 〈φ0〉 0.913 0.023 0.010
〈φ1〉 0.279 0.012 0.004

c 〈φ0〉 0.537 0.148 0.038
〈φ1〉 0.379 0.063 0.023

RMS of E〈φ0〉 0.573 0.060 0.029

RMS of E〈φ1〉 0.274 0.146 0.037
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Figure 4: Suite II scalar flux distributions for case 1 and L = 10
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Figure 5: Suite II scalar flux distributions for case 2 and L = 10
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Figure 6: Suite II scalar flux distributions for case 3 and L = 10
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5. Conclusions

We have numerically investigated the accuracy of two Monte Carlo algorithms originally proposed by Zimmer-
man [1] and Zimmerman and Adams [2] for particle transport through a binary stochastic mixture. The accuracy of
these algorithms was assessed by comparing to two suites of planar geometry binary stochastic mixture benchmark
problems. Suite I is a standard suite of benchmark problems driven by an isotropic incident angular flux on one
boundary [5]; Suite II is driven by an isotropic interior source [12]. In addition to comparisons of the ensemble-
averaged leakage values, we compared the ensemble-averaged material scalar flux distributions. We also presented
deterministic atomic mix solutions of the benchmark problems for comparison with the benchmark and the Monte
Carlo solutions.

Although relatively simple and computationally efficient, the atomic mix approximation produces generally inac-
curate results overall for the leakage values and the material scalar flux distributions for both benchmark Suites I and
II. The atomic mix approximation does not appear to possess enough accuracy for use with binary stochastic mixture
transport problems characterized by material parameters such as examined in this benchmark study.

Both Monte Carlo Algorithms A and B produce qualitatively and semi-quantitatively correct results for the leakage
values and the material scalar flux distributions for both benchmark suites. Our numerical results demonstrate that
Algorithm B generally produces significantly more accurate leakage values than Algorithm A and also significantly
more accurate material scalar flux distributions. Both Monte Carlo transport algorithms robustly produce physically-
realistic material scalar flux distributions for the transport problems examined. This attribute of these algorithms is
important, as these scalar flux distributions determine reaction rates in the materials of the system. Both Monte Carlo
algorithms are generally significantly more accurate than the atomic mix approximation for the benchmark suites
examined.

The leakage values predicted by both Monte Carlo algorithms are significantly more accurate for the interior source
benchmark suite than for the incident angular flux benchmark suite. However, the material scalar flux distributions
(particularly for Algorithm A) can exhibit significantly larger errors than the leakage values in both benchmark suites.
This discrepancy underscores the need to investigate the accuracy of both leakage values and scalar flux distributions
in fully assessing algorithms for these types of problems.

The material parameters used in the benchmark suite examined in this work are the same as used in previous
incident angular flux benchmark suite investigations [2, 5, 6, 15]. For some mean material slab width and total slab
width values used in the benchmark suite, a small number of distinct material slabs are present in typical realizations
(although some realizations have significantly larger numbers). Examining additional ranges of material parameters
and larger slab widths may be beneficial in further assessing the relative accuracy of Monte Carlo Algorithms A and
B.

In future work, we would like to investigate the accuracy of these Monte Carlo algorithms for additional bench-
mark problems. In particular, Davis, Palmer, and Larsen [22] compared the accuracy of the atomic mix and Levermore-
Pomraning models for a benchmark suite composed of binary solid-void stochastic mixtures motivated by the mod-
eling of pebble bed reactors. We would like to investigate the accuracy of Monte Carlo Algorithms A and B for this
benchmark suite. In addition, research by Larsen, Vasques, and Vilhena [23] has demonstrated that the Levermore-
Pomraning model (and hence Algorithm A) does not possess the correct asymptotic limit for diffusive problems that
are optically thick with weak absorption and sources. Investigating the accuracy of Algorithm B for these types
of problems would be interesting. Finally, higher-order closure models have been investigated for the Levermore-
Pomraning deterministic model that produce increased accuracy over the standard closure [24]. Comparing the results
obtained using the higher-order closure models and these Monte Carlo algorithms would be interesting.
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